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Abstract 

Test scores are commonly reported in a small number of ordered categories.  These contexts 

include state accountability testing, Advanced Placement tests, and English proficiency tests.  

This paper introduces and evaluates methods for estimating achievement gaps on a familiar 

standard-deviation-unit metric using data from these ordered categories alone.  These methods 

hold two practical advantages over alternative achievement gap metrics.  First, they require only 

categorical proficiency data, which are often available where means and standard deviations are 

not.  Second, they result in gap estimates that are invariant to score scale transformations, 

providing a stronger basis for achievement gap comparisons over time and across jurisdictions.  

We find three candidate estimation methods that recover full-distribution gap estimates well 

when only censored data are available. 

Keywords: achievement gaps, proficiency, nonparametric statistics, ordinal statistics 
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Estimating Achievement Gaps from Test Scores Reported in Ordinal "Proficiency" Categories 

Achievement gaps are among the most visible large-scale educational statistics.  Closing 

achievement gaps among traditionally advantaged and disadvantaged groups is an explicit goal 

of state and federal education policies, including current and proposed authorizations of the 

Elementary and Secondary Education Act (Miller & McKeon, 2007).  Gaps and gap trends are 

thus a commonplace topic of national and state report cards, newspaper articles, scholarly 

articles, and major research reports (e.g., Education Week, 2010; Jencks & Phillips, 1998; 

Magnuson & Waldfogel, 2008; Vanneman, Hamilton, Baldwin Anderson, & Rahman, 2009).   

Researchers selecting an achievement gap metric face three issues.  First, average-based 

gaps—effect sizes or simple differences in averages—are variable under plausible 

transformations of the test score scale (Ho, 2007; Reardon, 2008a; Seltzer, Frank, & Bryk, 1994; 

Spencer, 1983).  Second, gaps based on percentages above a cut score, such as differences in 

“proficiency” or passing rates, vary substantially under alternative cut scores (Ho, 2008; 

Holland, 2002).  Third, researchers often face a practical challenge: Although they may wish to 

use an average-based gap metric, the necessary data may be unavailable. 

This last situation has become common even as the reporting requirements of the No 

Child Left Behind Act (NCLB) have led to large amounts of easily accessible test score data.  

The emphasis of NCLB on measuring proficiency rates over average achievement has led states 

and districts to report “censored data”: test score results in terms of categorical achievement 

levels, typically given labels like “below basic,” “basic,” “proficient,” and “advanced.”  These 

censored data are often reported in lieu of traditional distributional statistics like means and 

standard deviations.  A recent Center on Education Policy (2007) report noted that state-level 

black and white means and standard deviations required for estimating black-white achievement 

gaps were available in only 24 states for reading and 25 states for mathematics.  Moreover, many 
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of these states only made these statistics available upon formal request.  Without access to basic 

distributional statistics, much less full distributional information, research linking changes in 

policies and practices to changes in achievement gaps becomes substantially compromised in the 

absence of alternative methodological approaches. 

This paper develops and evaluates a set of methods for estimating achievement gaps 

when standard distributional statistics are unavailable.  The first half of this paper reviews 

traditional gap measures and their shortcomings and then presents alternative gap measures in an 

ordinal, or nonparametric framework.  Links to a large literature in nonparametric statistics and 

signal detection theory are emphasized.  This nonparametric approach generally assumes full 

information about the test score distributions of both groups.  The second half of the paper 

introduces and evaluates methods for estimating achievement gaps using censored, unanchored 

data.  This describes most readily available state testing data under NCLB, where only a small 

number of categories are defined, and the cut scores delineating categories are either unknown or 

not locatable on an interval scale.  The contribution of the paper is a toolbox of transformation-

invariant gap estimation methods that either overcomes or circumvents the aforementioned 

theoretical and practical challenges: transformation-dependence, cut-score-dependence, and the 

scarcity of standard distributional statistics. 

Traditional Achievement Gap Measures and Their Shortcomings 

A test score gap is a comparative statistic describing the difference between two 

distributions.  Typically, the target of inference is the difference between central tendencies.  

Three “traditional” gap metrics dominate this practice of gap reporting.  The first is the test’s 

score scale, where gaps are most often expressed as a difference in group averages.  For a student 
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test score, ܺ, a typically higher scoring reference group, ܽ, and a typically lower scoring focal 

group, ܾ, the difference in averages, ݀௩   fol, lows: 

 ݀௩ ൌ തܺെ തܺ.  (1) 

The second traditional metric expresses the gap in terms of standard deviation units.  This 

metric allows for standardized interpretations when the test score scale is not well established 

and affords aggregation and comparison across tests with differing score scales (Hedges & 

Olkin, 1985).  Sometimes described as Cohen’s ݀, this effect size expresses ݀௩ in terms of a 

quadratic average of both groups’ standard deviations, ݏ and ݏ, as follows: 

 ݀ ൌ തೌିത್

ඨೞమೌ శೞ್
మ

మ

.  (2) 

The third traditional metric, the percentage-above-cut (PAC) metric, has become 

particularly widespread under NCLB, which mandates state selection of cut scores delineating 

“proficiency.”  Schools with insufficient percentages of proficient students face the threat of 

sanctions.  The relevance of the cut score and the mandated reporting of disaggregated 

proficiency percentages lead to a readily available gap statistic: the difference in percentages of 

proficient students.  If ܲܥܣ and ܲܥܣ are the percentages of groups ܽ and ܾ above a given cut 

score, the PAC-based gap is  

 ݀ ൌ ܥܣܲ െ  . (3)ܥܣܲ

The PAC-based gap in Equation 3 is known to be dependent upon the location of the cut 

score (Ho, 2008; Holland, 2002).  If the two distributions are normal and share a common 

variance, however, this cut-score dependence can be eliminated by a transformation of PACs 

onto the standard-deviation-unit metric using an inverse normal transformation.  The resulting 
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gap estimate, denoted ݀௧, for the “difference in transformed percentages-above-cut” 

(DTPAC), is written: 

 ݀௧ ൌ Φିଵሺܲܥܣሻ െ Φି ሺܲܥܣ ሻ. (4) ଵ


This method implicitly assumes the test scores in groups ܽ and ܾ are both normally distributed 

with equal variance.  The resulting gap can be interpreted in terms of standard deviation units.  If 

the distributions meet this strict normal, equal-variance assumption, Equation 4 returns the same 

effect size regardless of cut-score location.  Moreover, this common effect size will be equal to 

Cohen’s ݀.  More formal demonstrations of the logic of this transformation are widespread (e.g., 

Hedges and Olkin, 1985; Ho, 2009). 

Table 1 displays these four gap measures as they describe the White-Black fourth-grade 

reading test score gap in Alabama.1  Data are from the National Assessment of Educational 

Progress (NAEP) in 2005 and 2007.  Gap trends are also shown as the simple gap change from 

2005 to 2007.  Row 1 of Table 1 shows that Alabama’s White-Black gap decreased 6.41 scale 

score points: from 32.0 to 25.6 between 2005 and 2007.  Row 2 of Table 1 shows that the ݀-

based gap for Alabama decreased from 0.88 standard deviation units in 2005 to 0.74 standard 

deviation units in 2007, a decrease of 0.14 standard deviation units.  Rows 3-5 show ݀-based 

gaps for Alabama on the three NAEP cut scores.  The NAEP cut scores are the lower borders of 

three NAEP achievement levels: Basic, Proficient, and Advanced.  The gaps in the percentages 

above these cut scores are denoted in Rows 3, 4, and 5 as ݀ଵ
, ݀ଶ

, and ݀ଷ
 respectively.   

The differences between gaps across the three cut scores are stark.  Gaps appear to be 

much larger at Basic and Proficient cut scores than at the Advanced cut score.  Gaps decrease 

                                                            
1 We chose Alabama for this illustrative example for two reasons.  First, Alabama was one of only 7 out of a 
possible 200 state-subject-grade combinations with statistically significant NAEP White-Black gap trends between 
2005 and 2007 (Vanneman, Hamilton, Baldwin Anderson, & Rahman, 2009).  Second, the White-Black gap in 
Alabama in 2007 was similar in magnitude to that of the U.S. as a whole. 
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5.52 percentage points at the Basic cut score but increase 1.45 and 1.34 percentage points at the 

Proficient and Advanced cut scores.  These seeming contradictions cloud the overall finding of 

“a statistically significant gap closure” and encourage inferences about interactions between gap 

trends and particular regions of the score distributions.  Finally, the DTPAC approach shown in 

Rows 6-8 yields results that differ substantially across cut scores, revealing violations of the 

normal, equal variance assumption in practice.  For example, the DTPAC-based gap trend at the 

“Advanced” cut score shows twice the decline of the gap trend at other cut scores.  Note that the 

relatively large gap trend for Alabama over other states makes sign-reversal—the most dramatic 

dependence—less likely across metrics.  Alabama thus provides a somewhat conservative 

example of the degree to which interpretations may change under gap metric selection. 

Each of the four metrics compared in Table 1 has shortcomings.  The first two average-

based metrics depend on the assumption that the test score scale has equal-interval properties 

(Reardon, 2008b).  If equal-interval differences do not share the same meaning throughout all 

levels of the test score distribution, nonlinear transformations become permissible, and 

distortions of averages and Cohen-type effect sizes will result.  In educational measurement, 

arguments for strict equal interval properties are difficult to support (Kolen & Brennan, 2004; 

Lord, 1980; Spencer, 1983; Zwick, 1992).  And the magnitude of differences under plausible 

scale transformations can be of practical significance.  Ho (2007) has shown that ݀ can vary 

by more than 0.10 from baseline values under plausible monotone transformations.  Further, 

estimates of ݀ based on different reported test score metrics of the Early Childhood 

Longitudinal Study—Kindergarten Cohort (ECLS-K) reveal cross-metric gap trend differences 

as large as 0.10 (author calculations from Pollack, Narajian, Rock, Atkins-Burnett, & Hausken, 

2005).  This range is sufficient to call many gap comparisons and gap trends into question. 
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Gap inferences based on PAC-based metrics are subject to a different kind of distortion.  

Holland (2002) demonstrates that gap magnitude is confounded by the location of the cut score.  

With two normal distributions, for example, PAC-based gaps are maximized when the cut score 

is at the midpoint between the modes of the two distributions.  In Table 1, this explains the 

greater magnitudes of the gaps in Row 3 over Rows 4 and 5, as the NAEP Basic cut score is 

generally more central than the higher Proficient and extremely high Advanced cut scores.  As a 

corollary, when the scores of both groups are increasing, gap trends based on low cut scores will 

show gap closure, and gap trends based on high cut scores will show gap increases.  Although it 

is tempting to interpret the gap trends in Rows 3, 4, and 5 as a story about gap trends increasing 

for high-scoring students but decreasing for low-scoring students, there is an alternative 

interpretation: proportionately more white students than black students crossed the Advanced 

NAEP cut score simply because more of them were near the cut score initially. 

The inverse normal transformation of the percentages-above-cuts helps to address the 

predictable relationship between estimated gaps and the locations of cut scores, but it rests on the 

assumption of normality and equal variance, which is rarely satisfied in practice (Ho, 2008, 

2009).  As Table 1 illustrates, when this assumption is not met, estimated gaps and gap trends 

may be highly sensitive to the location of the cut score used to estimate them. 

Taken together, these shortcomings raise serious concerns about the gap and gap trend 

metrics in Table 1.  The first two rows assume not only equal-interval scale properties but also, 

for gap trends, the maintenance of equal-interval properties over time.  The gaps and gap trends 

in the next three rows confound the movement of score distributions with the density of students 

adjacent to the cut score.  Unadjusted ݀ and Δ݀ statistics will either appear contradictory 

across cut scores or encourage inaccurate inferences about gaps and gap trends at different 



ESTIMATING ACHIEVEMENT GAPS     8 
 

regions of the distribution.  The gaps and trends in the last three rows illustrate the consequences 

of a violation of the strict normal, equal variance distributional assumption.  These shortcomings 

motivate an alternative approach to achievement gap reporting. 

An Ordinal Framework for Gap Trend Reporting 

The literature on ordinal distributional comparisons contains attractive alternatives to 

traditional gap metrics.  When the scale-dependence of gap statistics is a concern, gaps can be 

derived from transformation-invariant representations like the probability-probability (PP) plot 

(Ho, 2009; Livingston, 2006; Wilk & Gnanadesikan, 1968).  The PP plot is best described by 

considering the two Cumulative Distribution Functions (CDFs), ܨሺݔሻ and ܨሺݔሻ, which return 

the proportions of students ( and ) at or below a given score ݔ in groups ܽ and ܾ, 

respectively.  The left panel of Figure 1 shows the normal CDFs of Alabama’s White and Black 

test score distributions on the 2005 Grade 4 NAEP Reading test as an example.  These are 

labeled generically as a lower-scoring focal distribution, ܨ, and the higher scoring reference 

distribution, ܨ.  The vertical axis expresses the proportion at or below a given NAEP scale score 

 The left panel of Figure 1 shows that, for the basic cut score of 208, 33% of the reference  .ݔ

group is at or below Basic, whereas 69% of the focal group is at or below Basic. 

Due to the construction of the PP plot from paired cumulative proportions, all statistics 

generated from a PP plot are transformation-invariant.  One useful statistic is the area under the 

PP curve, which is equal to Prሺܺ  ܺሻ, denoted ܲவ for short: the probability that a randomly 

drawn group a student has a greater score than a randomly drawn group b student.  This statistic 

has a substantial background in the nonparametric and ordinal statistics literature (e.g., Cliff, 

1993; McGraw & Wong, 1992; Vargha & Delaney, 2000).  In signal detection theory and 

medical testing, a mathematically equivalent expression is known as the Area Under the Curve 
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(AUC) of the Receiver Operating Characteristic (ROC) Curve, where the ROC curve is a PP plot 

with a particular interpretation.  In this literature, the two distributions are usually those of 

healthy and sick populations along some test criterion, and the interpretation of AUC is as a 

summary measure of the diagnostic capability of the criterion (Swets & Pickett, 1982).  The use 

of these approaches  for expressing achievement gaps in education is fairly limited (exceptions 

include Livingston, 2006; Neal, 2006; Reardon, 2008b). 

Although the interpretation of ܲவ may be appealing, a Cohen-like effect size that 

avoids the proportion metric allows for better equal-interval properties and interpretation in 

terms of standard deviation units.  For this purpose, Ho and Haertel (2006) and Ho (2009) 

propose the ܸ statistic, a nonlinear mon ransforma ion of ܲவ: otonic t t

 ܸ ൌ √2Φିଵሺ ܲவሻ. (5)  

The ܸ statistic has several useful properties.  First, ܸ is equal to the Cohen effect size 

when the two test score distributions are normal, even if they have unequal variances.2  

However, even in these circumstances, Cohen’s ݀ will vary under scale transformations whereas 

ܸ will not.  The implicit condition equating ܸ to ݀ is respective normality (Ho, 2009).  That 

is, the two distributions need not be normal in the metric in which they are observed, but there 

must be a common transformation of that metric that would render both distributions normal.  

This is a more flexible assumption than assuming distributions are normal on their extant 

common scale.  It is, in fact, departures from respective equivariant normality, not just 

                                                            
2 The ܸ statistic arises from this relationship between the parameters of two normal distributions and ܲவ: the area 
under the PP curve for the two normal distributions.  When b  distributions are normal with mean and variance 
parameters ߤ, ,ߤ ߪ 

ଶ, and ߪ
ଶ,  the relationship follow 1973): 

oth
s (Downton, 

ܲவ ൌ Φ ቆ
݀

√2 ቇ. 

Solving for ݀ yields ܸ. Equivalent expressions to ܸ have proposed in the ROC literature (e.g., Simpson and 
Fitter, 1973), where it is commonly known as ݀.  However, in the context of medical tests, AUC-type measures are 
most commonly used (Pepe, 2003). 
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equivariant normality, that lead to disagreements between ݀௧ gaps estimated from different 

cut scores.  In general, distributional assumptions in an ordinal framework are best described as 

respective or transformation-inducible. In the ROC literature, where the concern is sensitivity 

and specificity of diagnostic tests, the transformation-inducible normality assumption has been 

described as “binormal” (Swets & Pickett, 1982).  In the context of gaps between test score 

distributions, we retain the descriptor “respective normal” to make more explicit that the 

distributions need not be normal and need not be restricted to two in number. 

The ܸ statistic can be understood as the difference in mean test scores between two 

groups, both with normal test score distributions, that would correspond to a PP plot with an area 

under the curve of ܲவ. As shown in Equation 5, ܸ can be computed directly from the area 

under the PP curve.  It is thus broadly interpretable as a transformation-invariant analogue of 

Cohen’s ݀ even when distributions are not respectively normal.     

When the full CDFs are known for both groups, the calculation of nonparametric gap 

statistics like ܸ and ܲவ follows in straightforward fashion from the PP plot.  When only 

censored, PAC-type data are available, however, these statistics cannot be calculated exactly.  

The single-cut-score statistics ݀ and ݀௧ are estimable, but, as Table 1 shows, they can vary 

widely across alternative cut scores.  The next section describes the use of PAC data as observed 

points to estimate a PP curve.  These curves allow for nonparametric gap estimates from ordered 

categorical data alone. 

Estimating Ordinal Gaps from Censored Data 

In order to estimate the gap measure ܸ using censored data, we apply the PP framework 

described in Figure 1.  Extending previous notation, we begin with an interest in the gap between 

two groups, ܽ and ܾ.  The ݅th student score in group ݃ is given by ܺ.  Suppose there are ܭ  1 
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distinct achievement levels common to both groups.  These are delineated by ܭ cut scores 

ଵݔ ൏ ଶݔ ൏ ڮ ൏ , so that a student ݅ from group ݃ achieves Level 1 if ܺݔ  ൏  ଵ; Level ݇ ifݔ

ିଵݔ  ܺ ൏ ݇  forݔ א ሼ2 … ܭ ሽ; and Levelܭ  1 if ݔ  ܺ.  The CDF ܨ returns the 

cumulative proportion of students in group ݃ at or below cut score ݇, denoted 
 ൌ   .ሻݔሺܨ

Note that these proportions are simply the complements of the PAC statistics described above: 

ܥܣܲ
 ൌ 1 െ 

 ൌ 1 െ    .ሻݔሺܨ

If we had the full data from the test score distributions (that is, if we knew ܨ and ܨ), we 

would be able to compute any gap measure we like.  We could plot the full PP curve (Figure 1) 

describing the proportion of member th o  below given percentiles of group ܽ: s of group ܾ wi  sc res

ሺܩ  ܨ
ିଵሺሻ൯. (6) ሻ ൌ ൫ܨ

The problem arises when we do not know ܨ or ܨ but instead have access only to the 

proportions of each group above cut scores.  That is, we know only ܲܥܣ
 and ܲܥܣ

 (and, of 

course, the associated 
, because 

 ൌ 1 െ ܥܣܲ
) for some small number of cut scores ܭ.  

Usefully, the representation of the PP plot, ܩ, allows for the possibility of an estimate of the PP 

plot, ܩ, from the PAC data.  In fact, the ܭ points, ሺ
ଵ, ௪

ଵ ሻ, ሺ
ଶ, ௪

ଶ ሻ, … , ሺ
, ௪

ሻ, fall on the 

curve described by ܩ, by definition.  The points ሺ0,0ሻ and ሺ1,1ሻ can be added given the logic 

that some score exists below all observed score points, and some score exists above all observed 

score points.  Figure 2 shows these ܭ  2 points for the previously used example of Alabama 

Grade 4 NAEP Reading in 2005.  The point defined by the NAEP Basic cut score is highlighted, 

where 33% of reference group is below Basic and 69% of the focal group is below Basic.  The 

other two points are defined by cumulative proportions for the Proficient and Advanced cut 

scores respectively.   
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Our strategy will be to use these ܭ  2 points to estimate the function ܩ within the unit 

square.  If these points provide enough information to estimate ܩ reliably, then we can obtain 

reliable estimates of ܲவ, as the area under ܩ, and reliable estimates of ܸ from  ܲவ.  We 

denote this version of ܸ, estimated from censored data alone, as ܸ ൌ √2Φିଵ൫ ܲவ൯.  The 

contrasting target statistic, estimated from the full distributions, is ܸ௨ ൌ √2Φିଵሺ ܲவሻ.  In the 

next section, we describe nine candidate methods that attempt to minimize the distance between 

ܸ and ܸ௨: obtaining usable gap statistics from censored data alone. 

The criteria for evaluation of these methods have both theoretical and statistical 

motivations.  First, symmetry is a desirable property.  Logically, the distance between groups ܽ 

and ܾ should be the same, whether the expression is “group ܽ over group ܾ” or “group ܾ under 

group ܽ.”  Under symmetry, the following expression will hold: ܲவ ൌ 1 െ ܲவ.  As a 

corollary, following Equation 5, a ܸ statistic calculated using ܲவ will have the opposite sign of 

a ܸ statistic calculated using ܲவ.  Second, the function, ܩ, should be monotonically 

nondecreasing on the unit interval, following the theoretical restrictions on PP curves.  Third, the 

estimate of ܸ௨ should be unbiased over a range of realistic situations: the average distance 

ܸ െ ܸ௨ should be zero.  Finally, the magnitude of the distance between the estimate and the 

target should be as small as possible over a range of realistic situations.  This will be evaluated 

using the root mean square deviation (RMSD) between ܸ and ܸ௨.  The nine candidate 

methods follow. 

Piecewise Linear Interpolation (PLI)   

A graphically simple approach is to fit a linear spline function to the ܭ  2 points, 

essentially “connecting the dots” to estimate ܩ.  Computing ܲவ, the integral of ܩ over the unit 

interval, is then a straightforward sum of areas of rectangles and triangles: 
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 ܲவ
ூ ൌ  ቀ

ିଵ · ൫
 െ 

ିଵ൯ቁ 
1
2

ሺ
 െ 

ିଵሻ൫
 െ 

ିଵ൯൨
ାଵ

, 
ୀଵ

 where 
 ൌ 0 and 

ାଵ ൌ 1.  The PLI approach is also notable because of its equivalence to the 

so-called midrank convention (Conover, 1973), a conventional nonparametric approach to 

adjusting ܲவ when a pair of full distributions has ties.  Ties result in unconnected PP points on 

a PP plot: the same problem addressed by this paper.  The midrank convention adjusts ܲவ as 

follows: ܲவ
ௗ ൌ ܲሺܽ  ܾሻ   ሺୀሻ

ଶ

(7) 

; this is equivalent to Equation 7 if the censored 

distributions are treated as the full distributions of interest. 

Although this method has the advantage of being relatively simple, the linear spline 

function is unlikely to accurately describe the underlying distributional shape.  In particular, the 

integral will be biased toward 0.5 if the true function ܩ has a regular shape—concave up 

everywhere or concave down everywhere—because the linear spline will tend to truncate 

portions of the area between ܩ and the 45-degree line.   

Polynomial Fitted Curve (PFC)   

A second straightforward approach is to fit a ܬ௧-order polynomial (where ܬ  ܭ  1) to 

the ܭ  2 points:  ൌ ∑ ߚ


ୀଵ .  To obtain the area under the curve, the appropriate integral 

over the unit interval follows: 

 ܲவ
ி ൌ න  ݍመߚ



ୀ

 ݍ݀ ൌ
ଵ




መߚ
݆  1



ୀ

. (8) 

When the number of points is small, as in the common testing scenario where ܭ ൌ 3, one simple 

approach is to fit a cubic polynomial using ordinary least-squares.  Symmetry can be achieved by 

refitting the function after reversing  and , then averaging as follows, 
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ܸ
ி ൌ

Φିଵ൫ ܲவ
ி൯ െ Φିଵሺ ܲவ

ிሻ
√2

. 

A variation of this approach incorporates the known variance of the cumulative proportions, 

ሺଵିሻ


, into a weighted least-squares regression.  The equation can be further constrained by 

ensuring that the function passes through (0,0) and (1,1), points that should exist on a PP curve 

regardless of sampling or measurement error.  Algebraic reconfiguration of the regression 

equations under these constraints allows for estimation of regression parameters through 

standard statistical software programs.  We evaluate both free and weighted-constrained 

polynomial fitted curves and designate them PFCf and PFCwc respectively.  One anticipated 

drawback of the PFC approaches is that theoretically impossible PP curves can result, including 

those with negative slopes and those that break the vertical boundaries of the unit square.   

Monotone Cubic Interpolation (MCI)  

A third approach that combines some of the advantages of the PLI and PFC approaches 

fits a piecewise cubic spline through the data using the Fritsch-Carlson (1980) method.  The 

Fritsch-Carlson method guarantees a function that is monotonic, differentiable everywhere, and 

passes through each data point.  For the purpose of fitting PP curves, this affords three primary 

advantages.  First, the estimated curve, ܩ, passes through each of the K+2 points, like PLI but 

unlike PFC.  Second, the function is monotonic, resolving the problem of negative slopes and 

unbounded PP curves that can arise under the PFC approach.  Third, the curve is smooth 

everywhere on the unit interval, potentially resolving the bias that may arise with PLI.  Given the 

MCI-fitted curve ܩ and coefficients returned by the Fritsch-Carlson algorithm, we can compute: 

 ܲவ
ெூ ൌ  න ൫ߙො  ݔመߚ  ଶݔොߛ  ݔଷ൯݀ݔመߜ

್
ೖ

್
ೖషభ

൩
ାଵ



 (9) 
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A drawback of the MCI approach is asymmetry.  Like the PLI method, MCI will return 

asymmetrical gaps when groups ܽ and ܾ are switched on the axes.  As with the PFC approaches, 

we resolve this by averaging. 

Fitted Curve to Transformed Data   

An alternative to fitting the PP points directly is to transform the two axes and fit the 

transformed data points.  We can then transform the fitted line back into the original metric and 

integrate in order to compute ܲவ.  If the transformation results in a more familiar or easily 

estimable functional relationship between the variables, such as a line, then we can obtain more 

accurate estimates of ܲவ and ܸ௨.  We call this method by the mnemonic acronym TFIT 

(Transform-Fit-Inverse Transform).  In particular, we investigate two potential transformations: 

one using the probit (inverse-normal) function that is denoted PTFIT and one using the logit 

function that is denoted LTFIT.  Both functions are monotonic mappings of the domain ሺ0,1ሻ to 

the range ሺെ∞, ∞ሻ.  Due to the infinite mappings of (0,0) and (1,1), we exclude these two 

theoretical points and apply TFIT only to the ܭ observed data points. 

Probit transform-fit-inverse transform (PTFIT). 

By transforming each 
 and 

 using the probit function, we can fit a curve to the ܭ 

transformed points.  That is, we can fit a ܬ௧-order polynomial of the form 

 Φିଵሺሻ ൌ  ሻ൧ൣΦିଵሺߚ


ୀ

, (10) 

where ܬ ൏ ,∞should be odd such that the fitted curve goes toward ሺെ ܬ ,Moreover  .ܭ െ∞ሻ and 

ሺ∞,∞ሻ.  Such a curve will approach ሺ0,0ሻ and ሺ1,1ሻ when inverse-transformed back to PP space. 

When ܭ ൌ 3, as is standard in NAEP and common in many state accountability systems, the 
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linear fit is the only option.  This estimated line can be transformed back into PP space and 

evaluated numerically as the following integral:  

ܲவ
்ிூ் ൌ න Φ൫ߚመ  ݔሻ൧൯݀ݔመଵൣΦିଵሺߚ

ଵ


. 

 Symmetry may be obtained by fitting a principal axis regression line and obtaining ߚመ 

and ߚመଵ.  However, preliminary results showed marked improvement with a weighted least 

squares approach.  Each PP point may be weighted by the inverse of the variance in the 

transformed space.  When plotting group ܾ on group ܽ, as in a typical PP plot, an estimate of the 

standard error of each point in the transform p  by the delta method: ed s ace is given

ሻ̂ොሺߪ ൌ
ඥ̂ሺ1 െ /ሻ̂ ܰ 

߶൫Φିଵሺ̂ሻ൯
. (11) 

Here, ߶ is the normal density function, Φିଵ is the probit function, and 1/߶൫Φିଵሺ̂ሻ൯ is 

the slope of the probit function at ̂.  Fitting Equation 10 while weighting each point by the 

inverse of the square of Equation 11, we obtain a weighted least squares estimate of the slope 

and intercept.  Due to the asymmetry of the approach, we can achieve an average by repeating 

the process and plotting group ܽ on group ܾ.  A geometric average of the slopes provides the 

appropriate estimate of ߚመଵ, and ߚመ can be estimated knowing that the line must pass through the 

intersections of each individual line.  These may be transformed back into PP space for numeric 

integration as described before. 

When PTFIT is constrained to a linear fit, a more theoretically appealing estimate of ܸ௨ 

follows from the fact that a line in probit-transformed (normal-normal) space defines two 

respectively normal distributions.  The averaged ߚመଵ and ߚመ can be then used to obtain ܸ 

directly.  It is relatively straightforward to show that, if two distributions ܽ and ܾ are respectively 
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normal and can be transformed to have normal parameters ߤ, ,ߤ -, the probitߪ , andߪ 

transformed PP plot will be a line with slope ݉ ൌ ఙೌ
ఙ್

 and intercept ݊ ൌ ఓೌିఓ್
ఙ್

 (e.g., Pepe, 2003).  

Thus, we can express ܸ as a fun ion of  d  a uasi- ohe  expression:  ct  ݉ an  ݊ in  q C n

ܸ
்ிூ் ൌ

ߤ െ ߤ

 ට̂ߪ
ଶ  ߪ

ଶ

2

ൌ
݊

ට݉ଶ  1
2

. 
(12) 

Fitting a line through the probit-transformed PP points therefore implicitly assumes that 

the two distributions are respectively normal.  With enough cut scores (at least 4), one could fit a 

higher-order odd polynomial through the PP points.  Such a procedure would not imply 

respective normality, and numerical integration procedures would be required.  

Logit transform-fit-inverse transform (LTFIT).   

A similar procedure uses the logit function in place of the probit function.  The logit and 

probit functions are very similar, but the logistic function has thicker tails and might be more 

stable when fitting extreme proportions, particularly when cut scores are very high or low for 

certain groups.  In this case, let a standard logistic function be Λሺݔሻ ൌ ଵ
ଵାషೣ, and the inverse-

logistic, the logit, follows: Λିଵሺሻ ൌ ݈݊ ቀ 
ଵି

ቁ.  Following an analogous estimate of variance as 

that shown in Equation 11, we can transform each proportion using the logit function, then 

weight each point in a linear regression by the following factor: 

 ܹ ൌ
ሻ൯̂൫Λିଵሺߣ
ሺ1̂ െ ሻ̂ . (13) 

 Here, ߣ is a standard logistic density function given by ߣሺݔሻ ൌ ୣ୶୮ሺି௫ሻ
ሺଵାୣ୶୮ሺି௫ሻሻమ.  The 

geometric average slope and appropriate intercept are calculated as before, then numerical 
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integration obtains ܲவ
்ிூ் after the line is transformed back into PP space.  Note that no direct 

computation of ܸவ
்ிூ் is available as it was in the linearly fit PTFIT case.  

Average Normal Shift (ANS) 

The Normal Shift (NS) approach was introduced by Furgol, Ho, and Zimmerman (2010) 

as a method of estimating ܸ from censored data.  The authors adapt a maximum-likelihood-

based algorithm from Wolynetz (1979) that estimates a mean and variance from censored data 

with known cut scores assuming an underlying normal distribution.  With cut scores for state 

tests, cut scores are either unavailable or lack strong equal-interval properties for meaningful use.  

Therefore, the authors established cut scores by assuming the reference distribution, ܨ, was 

standard normal, Φ, leading to ܭ cut scores defined by Φିଵሺ
ሻ for ݇ ൌ 1 …  These cut  .ܭ

scores anchor the cumulative proportions for the focal group, 
, and these are used to estimate 

the mean and variance, ̂ߤ and  ߪො
ଶ, via the Wolynetz algorithm.  Given the assumed standard 

normal parameters of the reference distribution, the appropriate effect size estimate is simply 

 ܸ
ேௌ ൌ

െ̂ߤ

ඥሺ1  ොߪ
ଶሻ/2

. (14) 

A weakness of the NS model is that, like the PFC and MCI approaches, gap estimates are 

not symmetric under the choice of reference group.  We resolve this by averaging ܸ
ேௌ with its 

negative when the groups are reversed, and we contrast this approach with the Furgol, Ho, and 

Zimmerman approach by describing this as the Average Normal Shift (ANS) approach.  Both 

approaches assume respective normality but allow for variances to differ across the groups.  It is 

similar to the linear PTFIT approach in its assumptions but uses a maximum likelihood approach 

on the CDFs instead of a weighted regression on transformed cumulative percentages. 

Receiver Operating Characteristic Fit (ROCFIT) 
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 A previous section described the interpretation of a PP plot as a ROC curve in signal 

detection theory.  Within this literature, maximum likelihood estimates of the parameters for the 

ROC curve have been developed by Dorfman and Alf (1969) under the binormal or respectively 

normal assumption.  We use the algorithm as implemented in the Stata command, “rocfit”; it is 

also available in the R package “pROC.”  In Stata, the area under the curve, or ܲவ
ோைிூ், is stored 

as the scalar e(area), and the ܸ statistic, ܸ
ோைிூ், is stored as the scalar, e(da).   

The ROCFIT approach can be considered a more formal version of the linearly 

constrained PTFIT.  It fits the ܭ probit-transformed PP points in normal-normal space using a 

maximum likelihood approach.  It enjoys the property of symmetry.  A similar maximum 

likelihood extension of linearly constrained LTFIT in the ROC context was proposed by Ogilvie 

and Creelman (1968); we do not evaluate this bilogistic approach due to the lack of available 

software and the lack of promise of results to be shown. 

Average Difference in Transformed Percents-Above-Cut (ADTPAC)   

A previous section described ݀௧, an achievement gap measure that expresses the 

difference between groups ܽ and ܾ by taking the difference of probit-transformed PACs.  Table 1 

showed that this measure of the gap may differ across the ܭ cut scores due to departures from 

respective normality.  If the two test score distributions are normal with equal standard 

deviations, however, this measure will be the same regardless of which score is used as the cut 

score.  Moreover, it will be equal to Cohen’s ݀ and, in this special case, to ܸ.  Given that 

deviations from normality are expected, a simple method for obtaining a gap estimate is to 

average across the ܭ estimates of ݀
௧. 

We use an improved approach that takes advantage of the same weighting principles 

introduced for PFCwc and the two TFIT approaches.  Equation 11 can be used to obtain an 
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approximation of the variance of the difference in transformed PACs: ߪොଶ൫ መ݀௧൯ ൌ ሻ̂ොଶሺߪ 

 , to obtain a weighted averageݓ ,ሻ.  The inverse of these variances can be used as weightŝොଶሺߪ

difference of transformed PACs:   

 ܸ
் ൌ 

ݓ

ܹ ݀
௧



ୀଵ

. (15) 

Here, ݓ ൌ ଵ
ఙమቀௗೖ

ೌቁ
 and ܹ ൌ ∑ ݓ


ୀଵ .  Due to the inverse normal transformations in 

the calculation of each ݀
௧, this approach implicitly assumes that the two distributions are 

respectively normal with equal standard deviations.  The variation in the ݀
௧ gaps over ݇ is 

assumed to be sampling variation.  The average is thus an estimate of ܸ obtained without directly 

estimating the PP curve, ܩ.   

Table 2 summarizes the nine proposed methods of estimating ܸ௨ from the observed 

censored data.  Note that most of the methods guarantee monotonicity, and few of them are 

inherently symmetric.  For the asymmetric methods, we find some approach to taking an average 

of gaps estimated both ways in order to avoid the arbitrariness of the choice.  Due to the ordinal 

framework, the implied distributional assumptions are not traditional but respective.  The 

respective normal assumption implies that some shared transformation can render both 

distributions normal.  Likewise, the respective logistic assumption implies that some shared 

transformation can shape both distributions to the derivative of the logistic function: the shape of 

a Hubbert curve.  The respective distributional assumptions for the TFIT approaches apply only 

for linear models in the transformed space: when ܬ ൌ 1.  The TFIT and PFC approaches are thus 

a much larger family of approaches when greater numbers of cut scores allow for higher-order 

polynomial fits. 

Evaluating Approaches to Ordinal Gap Estimation 
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This section uses simulated and real data to compare approaches as they attempt to 

recover full-distribution gap estimates, ܸ௨, using censored data alone.  As Table 2 describes, 

there are strong a priori reasons to discount seemingly straightforward approaches, such as the 

anticipated bias of the PLI approach and the possibility of unbounded or decreasing functions 

with PFC approaches.  The first subsection compares the performance of different approaches 

across simulated scenarios.  The second subsection compares recovery of ܸ௨ in the real data 

context of NAEP White-Black achievement gaps in 2003, 2005, and 2007. 

Recovery of ࢛ࢌࢂ in Controlled Scenarios 

The initial goal is to identify the best gap estimation approaches in controlled scenarios 

where respective distributional shapes are known.  This section presents three simulation 

scenarios: an equivariant normal scenario, an unequal-variance normal scenario, and a skewed 

scenario using lognormal distributions.  For each of these, we 1) draw two samples from 

generating distributions with known parameters, 2) record ܸ௨ using these two full samples, 3) 

define a set of centered, plausible cut scores, 4) apply these cut scores to the two samples to 

obtain cumulative proportions and PACs, 5) apply each approach in Table 2 to these cumulative 

proportions to obtain ܸ values, and 6) repeat this many times to evaluate bias and variance 

under sampling.  We add the gap between the generating distributions as an additional factor to 

understand how the magnitudes of bias and variance vary for gaps between 0 and 1.5 standard 

deviation units in size. 

For these scenarios, we draw 2000 students for the reference group ܽ and 500 students 

for the focal group ܾ, approximating the median sample sizes used for state NAEP.  Following 

the NAEP design and the designs of many state testing programs, we censor the data using three 

cut scores.  Larger numbers of cut scores will increase the similarity between the censored and 
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full distributions and dampen the differences between estimation approaches.  To establish 

generic cut score locations, we use a symmetric approach with respect to both distributions: The 

three cut scores result in unweighted cross-group averages of PACs as follows: 80% above 

Basic, 50% above Proficient, and 20% Advanced (cumulative proportions of 0.2, 0.5, and 0.8). 

 The cut scores are obtained through an approach akin to mixture modeling that results in 

the appropriate PACs (or cumulative proportions) for the mixture of both distributions.  For 

example, when two normal distributions with unit variance are centered on 0 and 1 respectively, 

the cut scores -0.45, 0.50, and 1.45 result in 20%, 50%, and 80% PACs for the unweighted 

mixture of the two distributions.  This approach also has the advantage of keeping the amount of 

cut-score information constant—in the sense that the combined cumulative proportions are 

always the same—even as the gap between distributions shifts from 0 to 1.5.  Figure 3 shows the 

generating distributions mapped into PP space along with the PP points that would be generated 

in the population. 

These cut scores censor the distributions, leaving three pairs of cumulative proportions.  

Following the example in the previous paragraph, for a Basic cut score of -0.45, the normal CDF 

shows that 32.6% of a low-scoring, ܰሺ0,1ሻ distribution scores below Basic, and 7.4% of a high-

scoring, ܰሺ1,1ሻ distribution scores below Basic.  Note that these proportions average to 0.20, as 

expected by the cut score approach detailed in the previous paragraph.  Clearly, these 

percentages may change in any given sample due to sampling.  The sampled PP point will thus 

vary around the point ሺ.074, .326ሻ on a PP plot; this point can be found in Figure 3.   

The other two cut scores define two more PP points, and these, with the two theoretical 

points at the origin and ሺ1, 1ሻ where appropriate, are the data that the methods in the previous 

section use to obtain ܸ.  The second, unequal variance scenario increases the variance of the 
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generating distribution for the low-scoring group by 50%, and the third, skewed scenario uses the 

lognormal distribution to impart respective positive skew.  These are also shown in Figure 3 and 

are described in greater detail in the next subsections. 

The criteria for the recovery of ܸ௨ are bias, the average of ܸ െ ܸ௨ over all 

replications, and the root mean squared deviation (RMSD), the square root of the average of 

൫ ܸ െ ܸ௨൯ଶ
 over all replications.  We use 5000 replications for each distance between 

generating distributions, drawing 2000 for the reference group and 500 for the focal group for 

every replication.  The distance between the generating distributions is varied between 0 and 1.5 

at intervals of .02.  This allows comparison of approaches across a range of plausible gap 

magnitudes and across distributional scenarios likely to arise in practice.  Note that ܸ௨ is the 

appropriate criterion over ݀, because ݀ is a transformation-dependent statistic that cannot 

be fully specified within an ordinal framework.  Although ݀ happens to be equal to ܸ௨ in 

the two normal scenarios that follow, this does not change the fact that a transformation can 

distort ݀ but not ܸ௨. 

The normal, equivariant scenario. 

 The most straightforward model for test scores is the normal model, and the equal-

variance assumption is an appropriate baseline assumption in the absence of other information.  

Figure 3 displays the population PP curves that result from the normal, equivariant model when 

the mean difference is 0, 0.5, 1.0, and 1.5 standard deviation units.  The figure displays the 

population normal, equivariant PP curves as black, solid lines above the diagonal, and the 

“observed” points from the cut score algorithm in the population are also shown.  As expected, 

the curves bulge from the diagonal as the mean difference increases.  The observed points, 

however, stay on a line with slope -1, as expected from the cut score algorithm that keeps the 
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cumulative proportion of the mixture of distributions constant over mean differences.  The goal 

of each of the nine proposed approaches is to approximate the full curve using the five observed 

points alone. 

The top half of Figure 4 shows the bias—the average of ܸ െ ܸ௨ over 5000 

replications—over the range of mean differences and for each approach.  When the mean 

difference is zero, the PP curve is the line ݕ ൌ  and all nine approaches estimate this easily.  As ,ݔ

the mean difference increases, the PLI approach is the most biased, underestimating the full gap 

by almost 10%.  This is not surprising given that the linear approach truncates area under any 

concave curve.  The PFCf approach also underestimates ܸ௨, and its weighted, constrained 

counterpart, PFCwc, is positively biased.  The MCI and LTFIT approaches show slight negative 

bias when gaps are very large, and PTFIT, ANS, ROCFIT, and ADTPAC perform very well in a 

scenario that matches their assumptions perfectly.   

The bottom half of Figure 4 shows the RMSD, and there is a clear distinction between the 

PLI/PFC approaches and the others.  The weighted, constrained PFC approach can be seen to 

improve upon the free PFC approach when gaps are small.  However, when gaps are large, one 

or both groups may have cumulative proportions close to 0 or 1.  In these cases, the PFCwc 

approach places heavy weight on these extreme points while also forcing the curve to go through 

the origin and ሺ1, 1ሻ.  It is clear that this results in poor performance. Although there is a 

substantive and statistical justification to weight points and force the curve through the origin 

and ሺ1, 1ሻ, there appears to be little advantage to doing so.   

The normal, unequal-variance scenario. 

 Returning back to Figure 3, the unequal variance scenario can be seen mapped into PP 

space and reversed over the diagonal to unclutter the figure.  The generating distribution for the 
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low-scoring focal group has a variance of 1.5 compared to the unit variance of the reference 

group’s generating distribution.  This difference in variance, equivalent to increasing the 

standard deviation by 22.5%, represents a fairly high variance difference in practice, but 

differences in observed variances are not uncommon.  For example, the average absolute White-

Black variance ratio for 2009 NAEP was 1.15 across 172 state-subject-grade combinations, and 

4 state-subject-grade combinations exceeded an absolute ratio of 1.5.  As expected of the cut-

score-selection algorithm, comparing the “observed” PP points across the population PP curves 

reveals alignment on a line with slope of -1. 

 The top half of Figure 5 shows the bias plotted on the standardized mean difference as 

defined by ܸ௨ in the population.  The results are very similar to Figure 4 in spite of the notable 

variance differences.  The PLI approach remains negatively biased to a similar degree, and the 

weighted, constrained PFC approach begins performing more poorly than its free counterpart 

regardless of gap size.  The ROCFIT, PTFIT, and ANS account for variance differences 

explicitly and therefore perform without bias.  A notable difference from Figure 4 is that 

ADTPAC begins to show negative bias when gaps are large.  This is a reminder that ADTPAC 

assumes respective normality with equal variances, and its performance worsens when this 

assumption is not met.  The bottom half of Figure 5 shows the RMSD for the normal, unequal-

variance scenario.  It is worth noting that the RMSD for  ܸ௨ recovery by the six best 

approaches hovers around .015, a fairly small amount of variability for the estimation of gaps 

when the only three paired cumulative proportions are available.   

The lognormal, skewed scenario. 

 To challenge the assumptions of respective normal approaches like ANS, ROCFIT, and 

PTFIT, which account for respective normality and unequal variances, we use respectively 
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skewed lognormal distributions.  We define a random variable whose log is distributed ܰሺ0,0.3ሻ.  

Such a distribution has mean 1.05, a standard deviation of 0.32, and positive skew of 0.95.  To 

generate a gap, we shift one distribution above another such that ܸ௨ varies from 0 to 1.5 

standard deviation units.  Unlike the previous two scenarios, this is not equivalent to shifting 

݀ from 0 to 1.5, as ݀ ൌ ܸ only when distributions are normal.  Cut scores are generated as 

before.  These PP curves are also plotted back in Figure 3.   

A useful conceptual point is that two respectively lognormal distributions are not 

equivalent to two shifted normal distributions on the same scale that are transformed by the 

exponential function.  This latter construction is ordinally equivalent to the respective normal 

distributions presented in the first scenario.  Respectively lognormal distributions cannot be 

transformed to normal with a single transformation unless their CDFs completely overlap.     

The top half of Figure 6 shows the bias plotted on the ܸ௨ metric as before.  The 

performances of the PFCwc and ADTPAC approaches are notably worse.  It is clear at this point 

that the PLI and PFC approaches are flawed under even the most typical scenarios; they will not 

be considered further.  Taking Figures 5 and 6 together, the poor performance of ADTPAC 

under variance differences and skewness indicates its inability to adequately estimate the full 

distribution through weighted averaging of transformed PACs.  In contrast, although ANS, 

ROCFIT, and PTFIT show biased recovery of ܸ௨, their bias in this case is very small at around 

.004 for the largest gaps.  In this scenario, the ANS approach outperforms ROCFIT and PTFIT 

by very small amounts.  The LTFIT and MCI approaches have a larger amount of negative bias 

at around -.015; this is still less than 1% of the largest gaps.   

The bottom half of Figure 6 shows the RMSD, where the decline in ADTPAC 

performance is also apparent.  The efficiency of recovery of the five best approaches continues to 
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hover at around .015 and increases to just over .022 when population gaps are very large.  These 

approaches outperform seemingly attractive alternatives like PLI by a considerable margin and 

suggest that gap recovery is possible even when respective normal assumptions are not met.   

Recovery of ࢛ࢌࢂ in Real Data Scenarios 

This subsection assesses the performance of these approaches in real data scenarios.  We 

use the full distributions of plausible values from NAEP state distributions, averaging over the 

five available sets of plausible values as recommended by Mislevy, Johnson, and Muraki (1992) 

to obtain ܸ and ܸ௨.  The state distributions correspond to White and Black students in 2003, 

2005, and 2007, for Reading and Mathematics in Grades 4 and 8.  Out of 600 possible state-

subject-grade-year combinations (50 states by 2 subjects by 2 grades by 3 years), 490 have 

sufficient sampling of Black students to allow for the reporting of achievement gaps.  We 

calculate the nonparametric gap measure, ܸ௨, for these 490 White-Black gaps; these are the 

targets that the approaches attempt to recover under censored data scenarios.  The criteria are 

bias and RMSD averaging over these 490 trials.  

The full distributions clearly cannot have their standardized mean differences, variances, 

or skew manipulated as in Figures 4-6, as these distributions are real.  Their properties remain 

the same as those actually reported.  However, the factor of cut score location can be usefully 

introduced into this analysis, as recovery of gaps is expected to depend on the location of cut 

scores in the distributions.  We vary cut score location along two dimensions, the breadth of the 

cut scores and the stringency of the cut scores.  The cut scores are indexed by the average 

cumulative percentages as before, except instead of fixing the average cumulative percentages at 

20%, 50%, and 80%, they are varied systematically.  The breadth dimension has average 

cumulative percentages varying from 5%, 50%, and 95% (broad cut scores) to 45%, 50%, and 
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55% (narrow cut scores).  The stringency dimension has average cumulative percentages varying 

from 5%, 30%, and 55% (low cut scores leading to low cumulative percentages and high PACs) 

to 45%, 70%, and 95% (high cut scores leading to high cumulative percentages and low PACs). 

Unlike NAEP reporting, where there are common cut scores for each subject-grade 

combination, this approach allows each pair of distributions to have its own trio of cut scores.  

This is done to ensure that the interpretation of “broad” or “stringent” is consistent across pairs 

of distributions.  If a common set of cut scores were used, broad or stringent cut scores for one 

pair of distributions would be less broad or stringent for another.  Note also that some 

approximation of the results from the actual NAEP cut scores is located reasonably high along 

the stringency dimension, where the unweighted average cumulative proportions between White 

and Black students approach 45%, 70%, and 95% (55% basic and above, 30% proficient and 

above, 5% advanced) across state-subject-grade combinations. 

Recovery of gaps depending on cut score breadth. 

 The top half of Figure 7 shows the bias of the 6 best-performing metrics in their recovery 

of real-data gaps across broad and narrow cut scores.  As noted previously, the PLI and PFC 

approaches perform poorly in common scenarios and are not considered further.  The top half of 

Figure 7 shows that the overall bias of these six candidate methods can be very low.  The LTFIT 

and MCI approaches do not perform well when cut scores are narrow.  However, the four best 

metrics, ADTPAC, PTFIT, ANS, and ROCFIT have bias less than .02.  Focusing on these four 

approaches, the ADTPAC approach performs relatively poorly, and PTFIT does not perform as 

well as ANS or ROCFIT particularly when cut scores are broadly spaced.  The lowest bias across 

all methods occurs close to cumulative proportions of 20%, 50%, and 80%.  This suggests that 

the bias scenarios in Figures 4-6 are optimistic.  However, for ANS and ROCFIT in particular, 



ESTIMATING ACHIEVEMENT GAPS     29 
 

the bias ranges from -.007 to +.013, a very small bias given that the median White-Black NAEP 

gaps are generally about .75 standard deviations in size. 

The bottom half of Figure 7 shows the RMSD across cut score breadth.  As before, the 

MCI and LTFIT approaches perform poorly when cut scores are more narrowly spaced.  Within 

the top four approaches, the ADTPAC and PTFIT approaches perform relatively poorly when cut 

scores are extreme.  The poor ADTPAC performance is consistent with the findings in Figures 5 

and 6.  The performance of ANS and ROCFIT are indistinguishable along the RMSD criterion.  

The overall efficiency when cut scores are neither broad nor narrow is quite good, with RMSDs 

bottoming out at around .009, a small percentage of White-Black gaps in practice. 

Recovery of gaps depending on cut score stringency. 

The top half of Figure 8 shows the bias in recovery across cut score stringency.  The 

symmetry of these curves suggests that methods perform best when cut scores are central with 

respect to the unweighted mixture of both distributions.  The MCI and LTFIT approaches 

continue to perform worse than their counterparts, with negative bias.  The absolute bias of the 

PTFIT, ANS, and ROCFIT approaches are similar, and ADTPAC bias is negative when cut 

scores are low.   

The bottom half of Figure 8 shows the RMSD of the approaches and results in similar 

conclusions.  The LTFIT and MCI approaches perform relatively poorly.  The ANS and ROCFIT 

approaches perform the best, with slightly better efficiency than PTFIT.  ADTPAC does not 

perform as well outside of the region where it happens to show no bias.  Focusing on the right-

hand portion of the graph, where cut scores are closer to their real-world NAEP counterparts, the 

RMSDs are between .025 and .029.  This may still be considered surprisingly low given how 

little information exists about the lower half of the respective distributions.   When the basic cut 
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score is lower, as it often is in practice, Figure 7 suggests that performance will improve.  

Further, because state cut scores are usually lower or much lower than NAEP cut scores, the 

RMSDs are likely to be closer to those seen towards the center of Figure 8. 

Discussion 

 These results suggest three promising candidates for the estimation of gaps under 

censored data scenarios.  The two best approaches are ROCFIT, implemented by Stata in a 

command motivated by signal detection theory, and ANS, a simple adaptation of a maximum 

likelihood estimation procedure developed by Furgol, Ho, and Zimmerman (2010).  Both result 

in very small amounts of bias and RMSD across a range of simulated and real-data scenarios. 

The ROCFIT approach is symmetrical and estimates a PP curve directly, a comparative 

theoretical advantage over ANS, which is asymmetrical and estimates normal CDFs.  In addition, 

the ANS implementation in R does not have documentation and is not widely available.  Both 

packages also allow for the estimation of standard errors; the ROC approaches to standard error 

estimation are reviewed by Pepe (2003). 

For those who do not have access to ROCFIT approaches in Stata, the PTFIT approach is 

intuitive, easy to implement with standard routines in statistical packages, and shows little loss in 

performance across scenarios.  There may be greater possibilities for PTFIT when more cut 

scores are available, and higher-order polynomials can be fit to data on the probit-transformed 

axes.  The magnitudes of the bias and RMSD for all three of these methods are rarely over .02 

and are usually much less, an impressive result under the real-data and lognormal scenarios, 

where the respective normal assumption is threatened or violated outright.  These results suggest 

that the estimation approach is robust to deviations from respective normality across a range of 

cut score locations. 
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 The applicability of these approaches extends beyond gap estimation for censored state 

testing data.  Tests reported on score scales with few ordinal categories, such as Advanced 

Placement exams, which report scores on a 1-5 integer scale, and some exams for English 

Learners are also natural applications for these gap estimation approaches.  In these cases, the 

data are treated as censored even if the grain-size of the data is the finest available.  The 

argument in favor of the use of this framework is that some continuous scale underlies the 

observed scale.  Similarly, a case where ceiling or floor effects compress a theoretically 

distinguishable score range into a single undifferentiated score point—this is a censored data 

problem.  These are cases where an ANS-, PTFIT-, or ROCFIT-estimated ܸ statistic may in fact 

be preferable to effect sizes calculated from means and standard deviations on the established 

score scale. 

 A small number of technical issues remain.  The effects of sample size, sample size ratio 

across groups, and the overall number of cut scores are of interest.  We do not spend time on 

them here because the findings will be straightforward: more is better.  Increasing cut scores and 

sample size beyond the levels here will also mute the differences between methods that were our 

primary interest.  The adequate recovery of ܸ௨ when there are only three cut scores suggests 

that a higher benchmark for the minimum number of cut scores is not necessary.   

When sample sizes are smaller, cut scores are extreme, group differences are large, or 

some combination of these instances, there is an increased likelihood that the highest or lowest 

score category will have no student representation from one group or another.  In these 

situations, a number of the methods proposed here will fail, including PTFIT and ANS, which 

would both attempt to take an inverse-normal transformation of 0 or 1.  A simple correction 

involves adding a student or a fraction of a student to the highest or lowest score bin.   
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Measurement error is known to attenuate Cohen-type effect sizes by inflating standard 

deviations.  The same issues arise in PP plots, as measurement error will attenuate PP curves 

toward the main diagonal.  The NAEP examples are adjusted for measurement error through the 

plausible values methodology (Mislevy, Johnson, & Muraki, 1992), however, gap comparison 

across tests, times, or groups with different degrees of measurement error must acknowledge or 

adjust for attenuation.  An ad hoc disattenuation approach treats ܸ statistics like their ݀ 

counterparts and divides by the square root of the reliability estimate; this is discussed briefly in 

Ho (2009). 

Finally, it may seem straightforward to extend these analyses from gaps to trends.  After 

all, any two distributions on the same scale can be expressed as a PP plot; it may not seem to 

matter whether they are Groups ܽ and ܾ or Times 1 and 2.  However, we recommend caution in 

using these methods for descriptive trend analyses for a few reasons.  First, if cross-sectional, 

within-grade trends are the target of inference, these are much smaller in magnitude, and the 

degree of bias and variance reported here will have a greater impact on substantive 

interpretations.  Second, trends rely on the year-to-year linking of score scales, a source of error 

that this ordinal framework does not currently address.  Third, discrete score scales are typically 

aligned imperfectly from year to year due to linking functions.  A score bin in one year may not 

exist in the next, or two bins may be combined that once were separate.  This has little effect on 

the means of the full distributions, but a small shift in the scale can lead to a large percentage of 

students crossing one of a small number of cut scores.  This is not an issue with within-year gap 

measures, where score points align, but this issue may severely distort PP-based trend measures. 

Interestingly, this latter problem with trends does not necessarily generalize to a problem 

with gap trends.  As Ho (2009) has noted, one can express a gap trend as a “change in gap” or a 



ESTIMATING ACHIEVEMENT GAPS     33 
 

“difference in changes.”  These are equivalent in an average-based framework but not in an 

ordinal framework.  A “difference in changes” formulation subjects a gap trend to not one but 

two opportunities for the distortions noted in the previous paragraph.  However, a change-in-gap 

formulation, where gaps are estimated within each year and then subtracted from each other, 

manages to avoid the problems of year-to-year equating and misaligned score bins.  This is the 

recommended approach to tracking gaps over time. 

With widespread reporting of test scores in ordinal achievement levels, researchers 

interested in achievement gaps are increasingly faced with censored data scenarios.  This paper 

evaluates ordinal approaches for estimating achievement gaps using censored data alone and 

finds three approaches—ROCFIT, ANS, and PTFIT—whose performance justifies 

recommendation.  These estimates represent dramatic improvement over any gap estimate 

derived from a single cut score.  They also recover gaps well over a range of scenarios, in both 

an absolute sense and relative to alternative ordinal approaches.  The resulting estimates are 

interpretable on a familiar Cohen-type metric and are transformation-invariant: particularly 

useful properties for gap comparisons across different tests, times, grades, and jurisdictions. 
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TABLE 1.  White-Black gaps and gap trends on four different metrics; Alabama, Grade 4, 2005-

2007.  

 
݀௩ 

2005 2007 Change, 
32.00 25.59 -6.41 

 

݀ 

   

0.88 0.74 -0.14 

 

 

   

݀ଵ


 

35.36 29.84 -5.52 

݀ଶ


݀ଷ
 

23.85 25.31 +1.45 

6.09 7.43 +1.34 

    

݀ଵ
௧

 

 0.92 0.79 -0.13 

݀ଶ
௧

݀ଷ
௧ 

0.95 0.82 -0.13 

1.01 0.76 -0.26 

 

Note: Authors’ calculations from data from Alabama’s 
Grade 4 Reading administration of the National 
Assessment of Educational Progress, 2005-2007, 
obtained at http://nces.ed.gov/ 
nationsreportcard/naepdata/dataset.aspx.  
݀௩ denotes the average-based metric;  
݀ denotes Cohen’s ݀; ݀ denotes the percentage-
above-cut metric; ݀௧ denotes the transformed 
percentage-above-cut metric. 

 

  

http://nces.ed.gov/%20nationsreportcard/naepdata/dataset.aspx
http://nces.ed.gov/%20nationsreportcard/naepdata/dataset.aspx
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FIGURE 1. Illustrating the construction of a Probability-Probability (PP) plot from the paired 

cumulative proportions of distributions. 

 

Note: Data from idealized normal distributions using parameters from Alabama’s Grade 4 

Reading administration of the National Assessment of Educational Progress, 2005. 
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FIGURE 2. The 5 points on a PP plot from paired cumulative proportions defined by 3 cut 
scores. 

 

(0.33, 0.69) 

 ࢈

Note: Data from Alabama’s Grade 4 Reading administration of 
the National Assessment of Educational Progress, 2005.  The PP 
pair for the Basic cut score is referenced. 

ࢇ
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TABLE 2. Characteristics of Proposed Methods of Estimating ܸ 

 Properties Respective 
Distributional 
Assumptions 

 

Method Monotonicity Symmetry Notes 

PLI    Probable bias toward zero gap. 

PFCf 
PFCc 

   
Lack of monotonicity may lead to 
substantial bias and variance. 

MCI    
Implemented by Matlab’s “pchip” 
spline option. 

PTFIT   
Normal when 

ܬ ൌ 1 
ܭ ൏ 4 requires linear constraint. 

LTFIT   
Logistic when 

ܬ ൌ 1 
ܭ ൏ 4 requires linear constraint. 

ANS   Normal 
Maximum Likelihood.  Not readily 
available. 

ROCFIT   Normal 
Maximum Likelihood. Implemented 
by Stata’s “rocfit” command. 

ADTPAC   Normal, Equal 
Variance 

Simple to implement. 
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FIGURE 3. Generating distributions and the observed PP points in the population for the 
equivariant normal, unequal variance (reversed over the diagonal for visual clarity), and 
lognormal scenarios.  
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FIGURE 4. Bias and Root Mean Squared Deviation of gap estimation approaches plotted on the 
size of the true gap in a normal, equivariance scenario. 
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FIGURE 5. Bias and Root Mean Squared Deviation of gap estimation approaches plotted on the 
size of the true gap in a normal, unequal-variance scenario. 
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FIGURE 6. Bias and Root Mean Squared Deviation of gap estimation approaches plotted on the 
size of the true gap in a lognormal scenario. 
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FIGURE 7. Bias and Root Mean Squared Deviation of gap estimation approaches for White-
Black state achievement gaps on the National Assessment of Educational Progress plotted on the 
breadth of three cut scores. 
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FIGURE 8. Bias and Root Mean Squared Deviation of gap estimation approaches for White-
Black state achievement gaps on the National Assessment of Educational Progress plotted on the 
stringency of three cut scores. 

 

 

 

 


